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Abstract

This paper discusses the effect of income inequality on selection and aggregate

productivity in a general equilibrium model with non-homothetic preferences. It

shows the existence of a negative relationship between the number and quantity of

products consumed by an income group and the earnings of other income groups. It

also highlights the negative effect of mean-preserving spread of income on aggregate

productivity through the softening of firms’ selection. This effect is however mitigated

in the presence of international trade. In a quantitative analysis, it is shown that a too

large mean-preserving spread of income may harm the rich as it raises firms’ markups

on her purchases. This is contrary to the general belief that income inequality benefits

the rich.
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1 Introduction

Income inequality reappears as a hot social and economic issue in many developed coun-
tries (Atkinson, Piketty and Saez 2011, Piketty 2013). The majority of the economics litera-
ture has focused on studying the causes for income inequality, and technological progress
and trade liberalization have been presented as two major driving forces.1 In this paper,
we ask a different question – how does income inequality affect aggregate economic per-
formance and welfare in the context of an open economy? In particular, does there exist
an equity-efficiency trade-off in the sense that an increase in income inequality (i.e., a de-
crease in equity) increases efficiency as measured by aggregate productivity? Or, could
this be the other way around?

These questions has largely been ignored in the trade literature because of the usual
premise of homothetic preferences (e.g. Krugman 1981, Melitz 20032) or absence of in-
come effects in the consumption of traded goods (e.g. Melitz and Ottaviano 2008). As
those premises make most aggregate economic variables invariant to income redistrib-
ution there is no point to discuss its effect there. In contrast, the assumption of non-
homothetic preferences allows to shed light on the effect of income inequality on aggre-
gate productivity and welfare in the frameworks of the recent trade literature with firm
heterogeneity and endogenous product variety à la Melitz (2003) and Melitz and Otta-
viano (2008).

We first motivate our theoretical investigation by examining the conditional correla-
tions between a country’s TFP and its income inequality. Using a country-year panel
data during 1996-2012, and using the Gini coefficient and top 10% income share of two
measures of income inequality, we find significant and negative correlations of aggregate
TFP with the two inequality measures, controlling for country and/or year fixed effects.
Moreover, as the two major explanations for the cross-country differences in economic
performance are institutions and geography (or market access), we also control for these
two factors, and find that the negative correlation remains robust. In other words, even
conditional on institution, geography, and history (the state of development of a country
right before 1996 is subsumed into the country fixed-effect), income inequality provides
an additional explanatory power on aggregate TFP of a country.

We propose a theoretical analysis in which income inequality and trade affect aggre-

1For skill-biased technical change, see, for example, Berman, Bound, and Machin (1998) and Acemoglu
(2002). On the effect of globalization, see, for example, Grossman and Rossi-Hansberg (2008), Costinot
and Vogel (2010), Helpman, Itskhoki, and Redding (2010), Behrens, Pokrovsky and Zhelobodko (2014),
Grossman, Helpman, and Kircher (2017), Grossman and Helpman (2018), and Kim and Vogel (2018).

2In fact, this conclusion applies for all models in the model class characterized by Arkolakis, Costinot,
and Rodriguez-Clare (2012).
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gate productivity. We study a general equilibrium model in which firms have heteroge-
neous productivity and individuals are endowed with different skills and same Stone-
Geary non-homothetic preferences.3 The presence of various skill groups results in in-
come inequality and lead to demand patterns varying with individuals’ incomes. We
concentrate on an economy with two income groups (rich and poor) not only for the sake
of analytical tractability but also because of the recent focus on top and bottom income
groups. For tractability, we impose a Pareto productivity distribution in some parts of the
analysis.

To clarify the basic properties of the model, we first analyze a closed economy where
each firm enters and designs a differentiated variety and then decides to exit or produce
its variety according to an idiosyncratic unit production cost. Under the assumed pref-
erences, the consumption choice of an individual is unambiguously represented by the
choke price of her inverse demand function. This corresponds to the maximum price at
which she is willing to purchase a first unit of a variety. In contrast to Melitz and Otta-
viano (2008) where there is no income effect due to quasi-linear preference, choke prices
in our model differ across income groups. The choke prices of the rich and poor groups
are then sufficient statistics of the demands for the whole set of varieties in the economy.
Moreover, the price elasticity of individuals’ demand also varies with choke price. In par-
ticular, ceteris paribus, the richer income group faces lower price elasticity of demand.
For this reason, firms’ pricing behavior hinges upon income groups and firms separate
in two sets: the set of firms that have low unit production cost and target all consumers
with low prices and the set of firms that have high unit production cost and target only
the rich consumers with high prices. This is readily illustrated by the example of posters
and art paintings: while both goods have the same decorative functionality, the latter is
much more costly to make (especially in terms of per unit quality). At the equilibrium,
only richer individuals are willing to purchase the two goods to decorate their houses.
At the equilibrium, the price of each variety follows the movement of the rich and poor’s
choke prices.

Income inequality affects the average productivity across firms. It indeed alters the
prices of varieties through its effect on the rich and poor’s equilibrium choke prices. We
show that an increase in the rich group’s income raises this group’s choke price, but there
is a cross effect that such increase in the rich’s income reduces the poor’s choke price. The
rich group is willing to consume a wider set of varieties and entices new firms producing
more costly varieties to enter. At the same time prices augment and the poor reduce the
basket and the quantity of her purchases. On average, firms uses more input to produce

3The same preference is also used by Murata (2009) and Simonovska (2015).

3



their goods, which decreases the average productivity. Similar effect emerges when the
poor group becomes poorer because the cross effect implies that the rich’s choke price be-
comes larger. As a result, a mean-preserving spread implies a lower average productivity
because the rich’s choke price unambiguously increases, and there are on average more
costly firms in the economy.

We secondly study the effect of trade liberalization in an open economy. We find that
the negative effect of a mean-preserving spread on aggregate productivity is mitigated
by trade liberalization. The intuition is that lower trade costs expand variety and induce
tougher selection. Smaller trade costs lead to a tougher selection of firms in favor of those
with lower production costs. Compared with autarky, the number of unsold varieties is
larger within the global economy. Hence, when the rich gets a higher income, she spreads
her consumption towards the wider set of unsold goods in the whole world rather than
concentrates her purchases on the narrower set of domestic unsold goods. In the end,
consumed goods are produced with lower costs. In other words, it is the productivity
gains of globalization that mitigate the negative impact of income inequality on average
productivity.

We conduct a quantitative analysis to further examine the properties that are difficult
to obtain analytically. The above-mentioned analysis regarding average productivity is
based on the unweighted average across firms. We examine how aggregate productivity
(i.e., average productivity weighted by cost) reacts to mean-preserving spreads. In par-
ticular, when the poor become poorer, their consumption basket is more toward the vari-
eties that are cheaper to produce. Can this force alter the previous result? The answer is
no: we still find unambiguous decreases in aggregate productivity with mean-preserving
spreads.

In the quantitative analysis, we set the rich group to be the top 10% income earners. In
2015, the income ratio between the two groups in the US is 7.9. Using equivalent variation
as a “real” measure of utility change, we find that an income reallocation from the income
ratio of 7.9 to 1 is equivalent to a 69% rise of the poor’s real income and a 30% fall of the
rich’s. However, this result suggests that for a given amount of additional income, the
improvement in welfare in real terms would be larger if such additional income is given
to the poor than to the rich. Similarly, even assuming Benthamite social welfare function,
in which case the social planner does not actually value equality in utility, our result
shows that income reallocation from the rich to the poor is welfare improving.

Surprisingly, we also find that whereas mean-preserving spreads increase the rich’s
income, the effect on the rich’s utility can actually fall when the income inequality is
large. The reason behind this result is two-folds: increasing income inequality reduces
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aggregate productivity and increases markups when the rich/poor gain/lose presence in
the market. On the gains from trade, we find that moving from autarky to a benchmark
trade cost (τ = 1.7) is equivalent to increases of the poor’s and rich’s real incomes by 8.9%

and 3.6%, respectively. Trade liberalization therefore benefits more to the poor because
the poor consume more heavily on traded goods.4

Our paper is closely related to the broad literature of heterogeneous firms and produc-
tivity that is pioneered by Melitz (2003) and Eaton and Kortum (2002). To our knowledge,
our analysis is the first to offer new testable predictions about how income inequality af-
fects firm selection and average productivity. In contrast to the traditional view of equity-
efficiency tradeoff, Aghion et al. (1999) have highlighted reducing income inequality may
promote economic growth through saving, investment and incentives. Matsuyama (2002)
has studied the dynamic effect of income inequality on productivity in the context of
homogeneous firms and learning by doing. Higher income inequality is detrimental to
growth because it reduces the “mass of consumption” and therefore the dynamic produc-
tivity gains from learning by doing.5 Through a different mechanism, our model shows
that average productivity falls with inequality as it shuffles the mass of consumption from
low-cost to high-cost goods.

This paper relates to the literature on the relationship between income heterogeneity
and trade. Matsuyama (2000) and Fajgelbaum, Grossman and Helpman (2011) focus on
the effect of income heterogeneity on the patterns of trade in contexts in which goods dif-
fer in some vertical attributes (quality or priority of consumption). Behrens and Murata
(2012), Fajgelbaum and Khandelwal (2016), and McCalman (2018) make contributions on
the welfare implications of trade liberalization for different income groups. Neverthe-
less, none of these studies discuss the effects of income heterogeneity on selection and
productivity and how trade matters for these effects.

This paper is also related to the broad literature on the effect of nonhomothetic prefer-
ence. It can be used to study pro-competitive effect and pricing to markets, such as in Si-
monovska (2015), Bertoletti, Etro, and Simonovska (2018), and Arkolakis, Costinot, Don-
aldson, and Rodriguez-Clare (2018), on optimality in monopolistic competition models,
such as Parenti, Ushchev, and Thisse (2017) and Dhingra and Morrow (2019), on structural
change, such as in Comin, Lashkari, and Mestieri (2018), or on trade flows and patterns
of trade, such as in Fieler (2011) and Matsuyama (2015). Even though there are income
effects in these models, there is no differentiation of income within a country.

4A similar point was made by Fajgelbaum and Khandelwal (2016)
5Though not a main focus of their paper, Bertoletti and Etro (2016) show that income inequality decreases

entry of firms.
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The remainder of the paper is organized as follows. Section 2 provides an empirical
motivation for our theoretical investigation. Section 3 lays out the model in the closed
economy, and provides various comparative statics, with a focus on the effect of income.
Section 4 extends the model to the open economy, and carries out similar analysis with a
focus on the effect of trade liberalization. Section 5 provides a quantitative analysis of the
effects on aggregate productivity and welfare. Section 6 concludes.

2 Empirical Motivation

To motivate our theory, this section provides suggestive evidence on the relationship be-
tween income inequality and productivity. This section presents essentially conditional
correlations without attempting to establish a causal relation. As we are concerned with
how productivity is related to income inequality, we control for two major factors affect-
ing the level of development or technology of a country – institution and geography (i.e.,
market access).6 Mainly, we ask the following question: conditional on institution and
market access, is there a positive or negative correlation between income inequality and
country-level productivity? We first describe our country-year panel data and empirical
specification, and then presents the results.

Country-level productivity is measured by the total factor productivity (TFP) obtained
from the Penn World Table (PWT) 9.0.7 A special feature of the PWT data is that there are
one measure of TFP for cross-country comparison (CTFP), where the TFP level of the USA
is set to 1 for all years, and another by-country time-series measure (RTFPNA), where the
TFP level is calculated relative to the country’s 2011 level (hence TFP of each country at
2011 is set to 1). To utilize the panel data nature of our regressors, we construct a panel
of TFPs in the following way. We calculate a country c’s TFP at year t relative to the US’
level at 2011:

TFPc,t ≡ CTFPc,t × RTFPNAUSA,t.

A concern of such a panel of TFPs is that if year fixed-effects are controlled, then the panel
is essentially reduced to a pool of cross-section TFPs because RTFPNAUSA,t is the same for
all countries for each given year; thus, in this case, we basically rely on the cross-sectional
variations of the regressors to explain the variation in the TFP. We include specifications

6There is a vast literature regarding these two factors. For the role of institution, see, for examples,
Acemoglu, Johnson and Robinson (2005), Levchenko (2007), and Acemoglu and Robinson (2012). For the
role of geography and market access, see, for examples, Krugman (1991), Diamond (1997), Redding and
Venables (2004), Redding and Sturm (2008).

7For the detailed account for Penn World Table 8.0 and 9.0, see Feesntra, Inklaar, Timmer (2015).
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where (1) only country fixed-effects are controlled and (2) both country and year fixed-
effects are controlled.

We use two measures for income inequality for the period of 1996-2012: the Gini Co-
efficient and the share of total income by the top 10 percent (Top 10% Income Share), both
obtained from World Development Indicator.8 Following the literature on institution,
we use the rule of law as the measure for institutional quality of a country. The Rule of
Law index is obtained from the Worldwide Governance Indicators by the World Bank.9

Following the literature on economic geography, we define Market Access as trade–cost-
discounted and price-deflated sum of market sizes around the world. We use the real
market potential from CEPII’s Market Potential database.10

We first peek at the simple correlation by plotting averages of log of TFP and averages
of income inequality measures (the averages are taken over years). Panels (A) and (B) of
Figure 1 plot the average Gini Coefficient and average Top 10% Income Share, respectively.
There is a clear negative correlation between income inequality and TFP.

Figure 1(A) Figure 1(B)

We will estimate the following equation:

ln TFPit = β0 + β1Inequalityit + β2Xit + di + dt + εit

8We interpolate (but not extrapolate) the missing values based on available years for each country. The
number of countries in the overlap between the income-inequality measure and the TFP varies year by year,
but the number of countries is significantly smaller than 66 before 1996 and after 2012. Hence, we restrict
the sample to 1996-2012 to have a more inclusive set of countries.

9This index is calculated by including several indicators which measure the extent to which agents have
confidence in and abide by the rules of society, including perceptions of the incidence of crime, the effec-
tiveness and predictability of the judiciary, and the enforceability of contracts. During 1996-2012, the Rule of
Law is missing in 1997, 1999, and 2001, and hence we also interpolate for the missing values for these years.

10This is computed using Head and Mayer’s (2004) method, which adjusts for the impacts of national
borders on trade flows.
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where Inequalityit is the measure of inequality for country i in year t; Xit denotes our set
of covariates (Rule of Law and log of Market Access); di and dt are country and year fixed
effects. Note that country fixed-effect includes history, i.e., the state of development of a
country right before 1996. To account for potential serial correlations and heteroscedas-
ticity, standard errors are clustered at country level.

The regression results are reported in Table 1. Columns (1) - (6) show results based
on the Gini coefficient, whereas Columns (7) - (12) use the top 10% income shares. For
each income inequality measure, the first column estimates the case where both year and
country fixed-effects are controlled, whereas the second one estimates the case where
the year fixed-effects are dropped for the reason explained above. The third and fourth
columns are similar to the first two, except that now the Rule of Law is included as a
control variable. The sample includes 1297 observations with 100 countries.11 In the fifth
and sixth columns, we further include the Market Access as a control. One caveat is that the
sample size is reduced by half when the Market Access is included because the available
years for this measure are only up to 2003.

[Insert Table 1 here.]

Both measures of inequality exhibit significant and negative correlation with TFP
across most columns, consistent with the observation from Figure 1. When we control
for institution and geography, the coefficients on income inequality in Columns (5-6) and
(11-12) are significant at 10% level, whereas those in the other columns are significant at
1% level. The difference in significance levels is mostly due to the smaller sample sizes
in Columns (5-6) and (11-12) due to data constraint. Also, the TFP of a country is higher
when the country has larger effective market size and better institution, confirming the
rationales of including these controls.

Columns (6) and (12) are our most preferred specification, as it allows both the time-
varying and cross-sectional variations of the regressors to explain the variation in TFP.
Taking Column (12) as a benchmark, we can interpret the coefficient of −0.807 as the
following: if the Top 10% Income Share increases by 10 percentage points, the associated
decline in TFP is about 7.7%, conditional on the same rule of law, market access, and year
fixed-effects and country-specific time-invariant factors.

We next turn to our theory of how average productivity is affected by income inequal-
ity. We note here that our explanation is based on productivity selection, a mechanism
that is distinct from institution or geography.

11Nevertheless, due to data constraint, it is an unbalanced panel.
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3 Closed Economy

We present a model where a mass N of individuals are endowed with Stone-Geary pref-
erences over a set of differentiated varieties ω ∈ Ω. Each individual h belongs to either
the high or low income group h ∈ {L,H} with income sh > 0 and probability αh ∈ (0, 1),

h ∈ {L,H} (sH > sL and αH + αL = 1). Each firm produces a distinct variety ω. Firms
differ in marginal cost c(ω) and face monopolistic competition.

3.1 Demand

An individual in the income group h chooses the consumption profile q (.) that maximizes
her utility

∫
ω∈Ω

ln (1 + q (ω) /q̄) dω12 subject to her budget constraint
∫
ω∈Ω

p (ω) q (ω) dω =

sh, where q̄ > 0 is a constant and the price profile p (·) is taken as given.13 Without loss of
generality we can normalize the unit of goods such that q̄ = 1. Her demand is equal to

qh (ω) =
p̂h
p (ω)

− 1, (1)

where
p̂h =

sh + Ph
|Ωh|

, (2)

and Ωh is the set of goods that she consumes, |Ωh| ≡
∫
ω∈Ωh

dω is the measure of this set
and

Ph ≡
∫
ω∈Ωh

p (ω) dω (3)

is her (personal) price index over her consumptions (see Appendix A). The choke price p̂h
is the intercept of the individual demand curve; that is, the willingness to pay for the first
unit of a good. At given exogenous set of prices and consumed goods, the choke price
increases with larger income and aggregate price index and with smaller set of consumed
goods. Yet, for any endogenous set of consumed goods, it is readily shown that the choke
price is larger for higher income individuals: p̂H > p̂L.

12This is an affine transformation of the original Stone-Geary utility function
∫
ω∈Ω ln (q (ω) + q) dω.

13We use an additive utility function that yields the Stone-Geary demand functions. Those are linear in
income but do not exhibit expenditure proportionality (Pollak 1971). The linearity property is essential for
the demand aggregation process below. The utility function belongs to the class of hierarichal preferences
whereby the rich’s basket of goods includes the poor’s one, which has recieved good empirical support
(Jackson 1984). Simonovska (2015) exploits this set-up to study international pricing-to-market under the
assumption of homogenous income within a country.
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The aggregate demand for each good ω with price p(ω) = p is given by

Q (p) ≡

 αHN
(
p̂H
p
− 1
)

if p ∈ [p̂L, p̂H)

N
(
p̂HL
p
− 1
)

if p ∈ [0, p̂L)
, (4)

where p̂HL ≡ αH p̂H + αLp̂L is the average of individual choke prices (p̂H ≥ p̂HL ≥ p̂L).
For a given price p, the aggregate demand Q (p) is the same for all varieties because of
the symmetric preferences. Because of the presence of two income groups, it has a convex
kink at p = p̂L. The model mixes the properties of Mussa and Rosen’s (1978) unit-purchase
model with two income groups of consumers who demand one unit of an indivisible good
with continuous-purchase models where goods are infinitely divisible.

The price elasticity is

ε(p) = −d lnQ (p)

d ln p
=

{
p̂H
p̂H−p if p ∈ [p̂L, p̂H)
p̂HL
p̂HL−p if p ∈ [0, p̂L)

.

Because p̂H ≥ p̂HL, for a same price p, the elasticity is lower in the rich consumer segment.

3.2 Production

Labor is the only input. We consider two groups of individuals who differ only in the
number of efficiency units they offer: a high (low) income individual is endowed with
sH (sL) efficiency units of labor. In other words, we can interpret this as a difference in
human capital. We choose labor efficiency unit as the numéraire so that sH and sL also
measure high and low incomes.

Each firm produces and sells a unique variety ω under monopolistic competition. We
assume the existence of a large pool of potential risk neutral entrants. By hiring f units of
labor, each entrant obtains a distinct variety ω and gets a feasible production defined by
an idiosyncratic marginal input in labor efficiency units, c ∈ R+. Given the above choice
of numéraire, this also denotes the firm’s marginal cost. The parameter c is drawn from
a cumulative probability distribution G : R+ → [0, 1]. We denote the mass of entrants by
M . Therefore, each measure of goods dω is identical to the measure MdG(c).

Each firm maximizes its profit π (c) = (p− c)Q (p) taking the choke prices p̂L and p̂H

as given. Because the demand Q (p) includes two segments, a firm can choose between
targeting only the high income group or both income groups. Firms’ optimal markup is
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readily given by

m(p) ≡ p(c)

c
=

ε(p)

ε(p)− 1
=

{
p̂H
p

if p ∈ [p̂L, p̂H)
p̂HL
p

if p ∈ [0, p̂L)
.

Because p̂HL ≤ p̂H , for a same price, markup is higher in the rich’s market segment. The
optimal price is given by

p∗ (c) =

{
(p̂HLc)

1/2 if c ≤ ĉ

(p̂Hc)
1/2 if c > ĉ

(5)

and

ĉ1/2 ≡ (p̂HL)1/2 − (αH p̂H)1/2

1− α1/2
H

. (6)

(see Appendix B). Except at c = ĉ, the optimal price is strictly concave increasing function
of c. The concavity reflects that the presence of a pro-competitive effect whereby markups
fall with higher cost c. Observe that because p̂H > p̂HL, the price jumps upward for
the firm with cost c just above ĉ, reflecting a switch towards targeting the high income
consumers. Note that, in a partial equilibrium where we change one choke price and take
the other as fixed, we have

∂ĉ

∂p̂H
< 0 and

∂ĉ

∂p̂L
> 0. (7)

This means that the cutoff ĉ falls when the rich gets higher income and her choke price
rises. This is because their willingness to pay improves and more firms find it profitable
to target them. By contrast, the cutoff rises when the poor become richer and their choke
price rises. Targeting the entire population becomes more profitable.

In the product market equilibrium, each income group purchases the goods that are
targeted to them. In particular, the low income consumers buy only the goods produced
at cost in the range [0, ĉ]. This means that their choke price p̂L satisfy p∗ (ĉ− 0) < p̂L <

p∗ (ĉ+ 0). Given that all those goods are actually supplied by firms it must also be they
have low enough cost, i.e. ĉ < p̂L. High income individuals purchase goods produced
at costs in a range [0, ĉH ] with ĉH > ĉ. At the equilibrium, the price of the last purchased
good is lower than their choke price: p∗ (ĉH) ≤ p̂H . Furthermore this good is supplied
by a firm that makes zero profit. This implies that p̂H = p∗ (ĉH) = ĉH . In Appendix B,
we show that those conditions always hold. We summarize those points in the following
proposition:
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Proposition 1. The equilibrium price p∗ (c) increases in marginal cost c and jumps up in c at
ĉ. Low income consumers purchase goods produced at cost c ∈ [0, ĉ] and high income consumers
those at cost c ∈ [0, p̂H ], where p̂H > ĉ.

It is worthwhile pointing out that the quantity q (ω) in the utility function can actually
be interpreted as quality units if unit production cost c is also in terms of the cost per unit
of quality. Namely, the fact that the rich purchase more costly goods in this model can
be understood as they purchase goods with higher costs per unit of quality. Thus, our
model is entirely consistent with the notion that the rich purchase high quality goods. In
our model, the rich’s willingness to pay for quality is, indeed, larger than poor’s.

3.3 Equilibrium

Given Proposition 1, at the product market equilibrium, the choke prices can be written
as

p̂L =
sL + PL
MG (ĉ)

, p̂H =
sH + PH
MG (p̂H)

and p̂HL = αH p̂H + αLp̂L

and the price indices as

PL = (p̂HL)1/2

∫ ĉ

0

c1/2MdG (c) and PH = PL + p̂
1/2
H

∫ p̂H

ĉ

c1/2MdG (c) .

Eliminating price indices, these equilibrium conditions can be expressed as

eH (p̂H , p̂L)− sH
M

= 0, (8)

eL (p̂H , p̂L)− sL
M

= 0, (9)

where

eH (p̂H , p̂L) =

∫ ĉ

0

(
p̂H − (αH p̂H + αLp̂L)1/2 c1/2

)
dG (c) +

∫ p̂H

ĉ

(
p̂H − p̂1/2

H c1/2
)

dG (c) ,

eL (p̂H , p̂L) =

∫ ĉ

0

(
p̂L − (αH p̂H + αLp̂L)1/2 c1/2

)
dG (c)

are the consumers’ average expenditures per available variety while ĉ is given by its defin-
ition (6). After some algebraic manipulations, one can simplify the equilibrium conditions
(8) and (9) as

M =
sH

eH (p̂H , p̂L)
=

sL
eL (p̂H , p̂L)

. (10)
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Thus, consumers’ expenditures per unit of income are equal across income groups and
equal to the equilibrium mass of entrants . The product market equilibrium is defined by
the solution of those two equations for the choke prices (p̂H , p̂L). For a given M , the equi-
librium choke prices are sufficient statistics of product market equilibrium consumption
and production choices.

In the long run firms enter the market. Before entry, each entrant expects to cover her
entry cost so that ∫ ∞

0

max{π (c) , 0}dG (c) = f,

where the profit π (c) is given by N
(
p̂

1/2
HL − c1/2

)2

if c ≤ ĉ and by αHN
(
p̂

1/2
H − c1/2

)2

if
c > ĉ. Then, the entry condition writes as

π (p̂H , p̂L) =
f

N
, (11)

where

π (p̂H , p̂L) =

∫ p̂H

0

max

{(
(αH p̂H + αLp̂L)1/2 − c1/2

)2

, αH
(
p̂

1/2
H − c1/2

)2
}

dG (c) (12)

is the expected operational profit after entry. The general equilibrium is defined by the
variables p̂H , p̂L and M solving the equations in (8), (9) and (11). Finally, let the marginal
cost distribution have a bounded support and finite mean:

G : [0, cM ]→ [0, 1] such that E(c) =

∫ cM

0

cdG (c) <∞. (A0)

We prove the existence of a fixed point to the system of equations (8), (9) and (11):

Proposition 2. There exists an equilibrium under (A0).

Proof. See Appendix C.
A condition for the uniqueness of the general equilibrium can be found as follows.

First note that the expected operational profit π (p̂H , p̂L) is an increasing function of both
choke prices. So, the entry condition describes a decreasing relationship between the two
choke prices. Second, it can be seen that the second equality in (10) describes an increasing
relationship between the two choke prices if the conditions ∂eh/∂p̂h > 0 and ∂eh/∂p̂l < 0

hold for any h 6= l ∈ {H,L}. Under those conditions, it is clear that the two relationships
cross in a single point (p̂H , p̂L) that yields the unique equilibrium. The main question is
to verify that those conditions are true.

Using (6), it is easy to verify that the poor’s expenditure increases with own choke
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price and falls with the rich’s choke price: ∂eL/∂p̂L > 0 and ∂eL/∂p̂H < 0. The symmetric
condition holds for the rich provided that firms do not change consumer segment targets.
That is, if the cut-off cost ĉ is fixed. However, by (6), the cut-off cost ĉ falls (dĉ < 0) when
p̂H rises or p̂L falls. Then a mass−g(ĉ)dĉ > 0 of firms shift to the high income segment tar-
get, which reduces the rich’s expenditure by the amount

(
p̂

1/2
H − (αH p̂H + αLp̂L)1/2

)
ĉ1/2

(−g(ĉ)dĉ). The change in firms’ segment target therefore decreases the rich’s expenditure
and goes in the opposite direction of the effect of choke prices when ĉ is fixed. Since this
countervailing effect is proportional to the density g(ĉ), some smoothness property are
required to guarantee that G is not misbehaved about c = ĉ. Let

∂eH/∂p̂H > 0 and ∂eH/∂p̂L < 0. (A1)

We then have the following:

Proposition 3. The equilibrium exists and is unique if the cost distribution G satisfies (A0) and
(A1).

3.4 Income Distribution

We are interested in understanding how demands and choke prices are affected by changes
in income levels of the two groups. Intuitively, an increase in the income of one group
raises its willingness to pay, choke price and product demands. Since demand elasticity
falls with higher income, markups and prices increase. Facing higher prices, the other
group is enticed to diminish its consumption, which should be reflected by lower choke
prices. In appendix D, we prove the following Lemma:

Lemma 1. Under (A0) and (A1), a rise in the rich (resp. poor) group’s skill and income raises its
choke price and demands whereas it reduces the poor’s (resp. rich’s). Formally,

d ln p̂h
d ln sh

= −d ln p̂h
d ln sl

> 0, h ∈ {H,L}, ` 6= h. (13)

This has implications about the effect of income distribution on the average produc-
tivity and set of consumption goods. First, in this model, the two group incomes can be
written as sH = s+ αLv and sL = s− αHv where s ≡ αLsL + αHsH is the average income
and v ≡ sH − sL the income differential. Using this definition, a mean preserving spread
of the income distribution is equivalent to a rise in v, holding s, αH and αL constant. As
a result, by (13), a mean preserving spread increases the choke price of the high income

14



group. It indeed increases the high income and decreases the low income so that

d ln p̂H
dv

=
d ln p̂H
d ln sH

d ln sH
dv

+
d ln p̂H
d ln sL

d ln sL
dv

=
s

sHsL

d ln p̂H
d ln sH

> 0. (14)

Second, the average productivity is negatively related to the (unweighted) average
cost in the economy, which is given by

∫ p̂H
0

cdG (c) /
∫ p̂H

0
dG (c). The average cost moves

in the same direction as the choke price p̂H while the average productivity goes in the
opposite direction. Hence, by (13), the average productivity falls with higher sH . By (14),
it also falls with a mean preserving spread of the income distribution (higher v). The
point is that when the high income group gets richer, it consumes more varieties with
high production cost, which raises the average cost and reduces the average productivity
in the economy.

Finally, we investigate how the baskets of goods is altered after income changes. The
basket of the poor’s individual is given by the cut-off cost ĉ. This cost falls with a higher
income for the rich and decreases with a higher income for the poor. We indeed have

d lnĉ

d lnsH
=

∂ ln ĉ

∂ ln p̂H

d lnp̂H
d lnsH

+
∂ ln ĉ

∂ ln p̂L

d lnp̂L
d lnsH

< 0,

where the inequality stems from (7) and (13). The increase in the rich’s income raises her
demand so that more firms target her and raise their prices. Higher prices then decreases
the poor’s demand and raises further the incentives to target the rich. It is readily verified
that the opposite effect holds with a change in the poor’s income: d lnĉ/d lnsL > 0. As a
consequence, a mean preserving spread of the income distribution reduces the cut-off cost
ĉ. Indeed one readily checks that

d lnĉ

dv
=

d lnĉ

d lnsH

d lnsH
dv

+
d lnĉ

d lnsL

d lnsL
dv

< 0.

The mean preserving spread therefore reduces the relative measure of varieties consumed
by the poor to the rich: that is, it reduces the ratio

MG (ĉ)

MG (p̂H)
=

G (ĉ)

G (p̂H)
.

Proposition 4. Suppose that the cost distribution G satisfies (A0) and (A1). Then, a mean-
preserving spread of the income distribution (i) increases the choke price of the high income group,
(ii) reduces the (unweighted) average productivity in the economy and (iii) reduces the set of goods
consumed by the poor relative to that by the rich.
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Income redistribution policies have the opposite effect of mean-preserving spreads:
they lower the choke price of the high income group and raises average productivity.
This model yields a clear-cut answer as to how mean-preserving spread of income dis-
tributions affect aggregate economic performances. Such a result does not show up in
a model under homothetic preference or under a quasi-linear preference (Melitz 2003;
Melitz and Ottaviano, 2008).14

3.5 Pareto Productivity Distribution

To obtain more analytical results, we now assume Pareto productivity distribution. Since
c is the inverse of productivity, this implies that the c.d.f. of the cost distribution is given
by G (c) = (c/cM)κ for c ∈ [0, cM ] and κ ≥ 1. For the sake of conciseness, we further use
r = p̂H/p̂L to refer to the choke price ratio. The equilibrium prices rewrite as

p∗ (c) =

{
(αHr + αL)1/2 p̂

1/2
L c1/2 if c ≤ ĉ

r1/2p̂
1/2
L c1/2 if c > ĉ

, (15)

while the cutoff cost as

ĉ1/2 =
(αHr + αL)1/2 − α1/2

H r1/2

1− α1/2
H

p̂
1/2
L . (16)

This gives the following three equilibrium conditions

0 = Φ

(
r;κ, αH ,

sH
sL

)
, (17)

p̂L = c
κ
κ+1

M

(
f

N

) 1
κ+1

[Γ2 (r;κ, αH)]−
1

κ+1 , (18)

M =
NsL
f

Γ2 (r;κ, αH)

Γ1 (r;κ, αH)
. (19)

where Φ, Γ1 and Γ2 are functions given in Appendix E. From (17) the value of the choke
price ratio r only depends on the exogenous parameters κ, αH , and the income ratio
sH/sL. Given the value of r, one can determine the choke price p̂L and the mass of en-
trants M from (18) and (19). The Pareto cost distribution permits to separate the effects of
some parameters and sufficient statistics such as sH/sL and f/N . In terms of the effect of

14For example, in Melitz (2003), the homothetic preference implies that all that matters for selection is the
mean (or total) income. In Melitz and Ottaviano (2008), the quasi-linear preference also implies the income
elasticity of demand for differentiated goods is zero. That is, richer individuals spend the same amount on
the differentiated products as the poor individuals, and they only spend more in the numeraire good.
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income distribution, we show in Appendix E that r∗ strictly increases in sH/sL. In Appen-
dix E, we show that using this fact and Lemma 1, Γ2 and Γ2/Γ1 are both strictly increasing
in r∗. From these, it is shown that (13) holds. We have the following proposition.

Proposition 5. Suppose a Pareto productivity distribution. Then,

1. There exists a unique equilibrium.

2. Assumptions (A0) and (A1) hold so that Proposition 4 holds.

3. The equilibrium choke price ratio r strictly increases with income inequality (higher sH/sL).

4. The number of entrants M is proportional to the population size N and inversely propor-
tional to entry cost f .

5. The choke prices (p̂L, p̂H), the cut-off cost ĉ, and the equilibrium price p∗ (c) of any firm
with cost c increase in the maximum cost cM and the entry cost f , and decrease with the
population size N .

6. A proportional increase in incomes (i.e. higher sL holding sH/sL unchanged) raises the mass
of entrants M proportional to the average income.

Proof. We show in Appendix E that (A0) and (A1) are satisfied by G (c) = (c/cM)κ for
c ∈ [0, cM ] and κ ≥ 1. Thus, by Lemma 1 and Propositions 3 and 4, Points 1 and 2 hold.
For Point 3, also see Appendix E. Points 4-6 can be obtained by observing (17) and (19).

Under Pareto productivity distribution, the equilibrium utility can be written as

U (sH) =
Mp̂κL
cκM

[
aκ ln

(
r1/2 (αHr + αL)−1/2

)
+
rκ

2κ

]
(20)

U (sL) =
Mp̂κL
cκM

[
aκ

2κ
− aκ ln

[(
1− α1/2

H

)
a+ (αHar)

1/2
]]

(21)

where a ≡ ĉ/p̂L =
[
(αHr + αL)1/2 − α1/2

H r1/2
]2

/
(

1− α1/2
H

)2

with 1/r < a < 1 < r. Using
the equilibrium conditions, we get

Mp̂κL
cκM

= sL

(
N

f

) 1
κ+1

c
− κ
κ+1

M

[Γ2 (r;κ, αH)]
1

κ+1

Γ1 (r;κ, αH)

So, utility rises with the larger population mass N and lower fixed input f . Those para-
meters indeed increase labor supply and decrease labor demand so that more firms enter
and generate more product diversity and more competition, which benefit consumers.
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Larger average productivity also raises utility as it can be easily shown that a decrease
in cM increases both the intensive and extensive margins. The utility differential between
high and low income consumers is equal to

U (sH)− U (sL) =
Mp̂κL
2cκM

{
aκ ln

[
r (αHr + αL)−1

[(
1− α1/2

H

)
a+ (αHar)

1/2
]2
]

+
rκ − aκ
κ

}

=
Mp̂κL
2cκM

aκ ln

ar
[(

1− α1/2
H

)
a1/2 + (αHr)

1/2
]2

αHr + αL

+
rκ − aκ
κ

 .

As ar > 1, it can be easily shown that the logarithm term is positive. Hence, U (sH) >

U (sL) as r > a.
The effect income inequality on utility is not apparent from the above analytic, and we

will further explore this in our quantitative analysis in Section 5.

4 Open Economy

We now study the implications of international trade and extend the above model to
many trading countries and trade costs. We focus on the properties of income distribution
and trade integration in the case of symmetric countries.

We consider n countries each with the same population size N and workers’ skill dis-
tribution sH and sL with the probability αH and αL ∈ (0, 1) (αH + αL = 1). Earnings in
each country are respectively wsH and wsL where w is the local wage. In each country,
each firm produces a unique variety ω under monopolistic competition using an idiosyn-
cratic marginal cost c, which yields a variable cost cw. Firms now produce for the local
and foreign locations and incur an iceberg trade cost τ − 1 > 0 per unit of exported good.
That is, every unit of exported good costs τcw. Firms incur no trade cost on their local
sales. They pay a cost wf to enter so that, in each country, a mass M of entrants obtains
a distinct variety ω and draw a cost parameter c from the cumulative probability distrib-
ution G. Again, the measure of goods produced in each country dω is equal to MdG(c).
One can then replace the label of a variety ω by its production cost c. Given the symmetric
setting, all economic variables are equal and we can normalize all local wages to one.

Because of the symmetry, the aggregate demand for imports or local goods is given
by the expression Q (p) in (4). A firm producing with cost c makes a profit (p− c)Q (p)

for its home sales and (p− τc)Q (p) for its exports. Under monopolistic competition,
the firm chooses the prices that maximize its total profit taking all equilibrium choke
prices as givens. At fixed choke prices, demands in each country are independent of each
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other so that optimal prices in a country are obtained independently of the prices in other
countries (as in the closed economy model, see Proposition 1). Optimal local prices p (c)

write as before as

p∗ (c) =

{
(p̂HLc)

1/2 if c ≤ ĉ

(p̂Hc)
1/2 if c > ĉ

,

where ĉ is given by (6), while optimal export prices are simply given by p∗ (τc). The
only difference is that the highest cost firm that sells to a foreign high (resp. low) income
group has a cost equal to p̂H/τ (resp. ĉ/τ ). The equilibrium price levels and indices can
be computed as before and reduced to the equilibrium conditions

M =
sH

eH (p̂H , p̂L)
=

sL
eL (p̂H , p̂L)

, (22)

where

eL (p̂H , p̂L) =

∫ ĉ

0

(
p̂L − p̂1/2

HLc
1/2
)

dG (c) + (n− 1)

∫ ĉ/τ

0

(
p̂L − p̂1/2

HL (τc)1/2
)

dG (c) ,

eH (p̂H , p̂L) =

∫ ĉ

0

(
p̂H − p̂1/2

HLc
1/2
)

dG (c) +

∫ p̂H

ĉ

(
p̂H − p̂1/2

H c1/2
)

dG (c)

+ (n− 1)

[∫ ĉ/τ

0

(
p̂H − p̂1/2

HL (τc)1/2
)

dG (c) +

∫ p̂H/τ

ĉ/τ

(
p̂H − p̂1/2

H (τc)1/2
)

dG (c)

]

express the consumers’ average expenditure per available variety.
The firm’s profit includes its home and foreign sales: π (c) = (p∗(c)− c)Q (p∗(c)) +

(n− 1) (p∗(τc)− τc)Q (p∗(τc)) . The free entry implies that E [π (c)] = f . We write this as

π (p̂H , p̂L) =
f

N
, (23)

where π (p̂H , p̂L) = E [π (c)] /N, or equivalently,

π (p̂H , p̂L) =

∫ ĉ

0

(
p̂

1/2
HL − c1/2

)2

dG (c) +

∫ p̂H

ĉ

αH

(
p̂

1/2
H − c1/2

)2

dG (c)

+ (n− 1)

[∫ ĉ/τ

0

(
p̂

1/2
HL − (τc)1/2

)2

dG (c) +

∫ p̂H/τ

ĉ/τ

αH

(
p̂

1/2
H − (τc)1/2

)2

dG (c)

]
.

The mass of surviving firms in a country is equal to MG(p̂H).
As in the closed economy, the three market conditions in (22) and (23) determine the

choke prices (p̂H , p̂L) and mass of entrants M . The existence of an equilibrium can be
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proven in the same way. Therefore, we can conclude that there always exists a trade equilib-
rium under condition (A1).

Using Pareto productivity distribution and a similar procedure for simplifying equi-
librium conditions, we obtain

0 = Φ

(
r;κ, αH ,

sH
sL

)
, (24)

p̂L = c
κ
κ+1

M

(
f

N [1 + (n− 1) τ−κ]

) 1
κ+1

[Γ2 (r;κ, αH)]−
1

κ+1 , (25)

M =
sLN

f

Γ2 (r;κ, αH)

Γ1 (r;κ, αH)
, (26)

where we used the definition p̂H = rp̂L and Φ, Γ1, and Γ2 are the same functions as in the
closed-economy model. Therefore, Propositions 2, 4 and 5 also hold in the open economy. In
the following we investigate the equilibrium properties under Pareto productivity distri-
bution.

4.1 Trade integration

What is the impact of trade integration? From equilibrium conditions (24) and (26), we
observe that the trade cost τ and number of countries n do not affect the determination
of the choke price ratio r and the mass of entrants M . Fixing all parameters except trade
cost and number of countries, we can use conditions (24), (25) and (26) to write

p̂L
p̂AL

=
p̂H
p̂AH

=
p̂HL
p̂AHL

=
ĉ

ĉA
=

(
1

1 + (n− 1) τ−κ

) 1
κ+1

and
M

MA
= 1, (27)

where we denote the autarky situation with the superscript A (i.e. when n = 1 or τ =∞).
The trade cost and number of countries only affect the choke price and cut-off through

the term (n− 1) τ−κ. Hence, an increase in the number of countries is equivalent to a
decrease in trade cost such that

∆ ln τ = −1

κ
∆ ln (n− 1)

where ∆ denotes the difference in the variables between two cases. Accordingly, the ad-
hesion of a new country in a trade network will be equivalent to a drop in trade costs. But,
because of the term n − 1 is not proportional, the equivalent drop in trade cost becomes
larger in smaller trade networks. Since, larger trade networks and lower trade costs have
the same effect on the choke prices (p̂H , p̂L, p̂HL) and cut-off ĉ, we can combine the discus-
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sion on trade costs and networks for all the variables that are directly determined by the
term (n− 1) τ−κ.

It can be seen from (27) that lowering trade costs diminishes both the choke prices
p̂L and p̂H compared to the autarky situation. The prices of domestic sales relative to
autarkic ones depend on whether the production cost of the good lies above or below the
thresholds ĉ and ĉA. More specifically, the ratio p∗ (c) /pA (c) simplifies to

(
p̂HL/p̂

A
HL

)1/2

if c ≤ ĉ,
(
p̂H/p̂

A
HL

)1/2 if ĉ < c ≤ ĉA and
(
p̂H/p̂

A
H

)1/2 if c > ĉA. After some algebraic
substitutions, we get

p∗ (c)

pA (c)
=


(

1
1+(n−1)τ−κ

) 1
2(κ+1)

if c /∈ (ĉ, ĉA)(
rA

αHrA+αL

)1/2 (
1

1+(n−1)τ−κ

) 1
2(κ+1)

if c ∈ (ĉ, ĉA)

.

So, a fall in trade cost reduces the prices of all domestic products except those with
costs in the neighborhood of ĉ for which prices jump upwards. The intuition is that a
lower trade cost brings not only better market access and market sizes but also more
competition. Competition reduces the choke prices and therefore the demands faced by
every firm. Given lower demands, some firms are enticed to switch to the higher income
group target. Similarly, the import prices relative to the autarky prices of firms with same
cost c are given by

p∗ (τc)

pA (c)
=


τ 1/2

(
1

1+(n−1)τ−κ

) 1
2(κ+1)

if c /∈ (ĉ/τ, ĉA/τ)

τ 1/2
(

rA

αHrA+αL

)1/2 (
1

1+(n−1)τ−κ

) 1
2(κ+1)

if c ∈ (ĉ/τ, ĉA/τ)

. (28)

Thus, lower trade costs also reduce destination prices of imported varieties except for
those goods produced at costs close to ĉ/τ . The intuition is the same: lower trade costs in-
crease competition so that product demands shift down and entice exporters to set lower
prices unless they switch to the higher income group target. To sum up, lower trade costs
diminish destination prices of local and imported varieties except for those goods produced at costs
close to ĉ and ĉ/τ .

From the previous paragraph, we infer that imported goods are more expensive than
local ones. Indeed, on the one hand, an importer producing abroad at a cost c /∈ (ĉ/τ, ĉ)

sets its (destination) prices τ 1/2 times higher than a local producer producing at the same
cost. That is, p∗ (τc) = τ 1/2p∗ (c) if c /∈ (ĉ/τ, ĉ). On the other hand, a producer with cost
c ∈ [ĉ/τ, ĉ] have different targets in their local and export markets: they target the whole
population in local market but focus on the high income group in the export markets.
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The difference between the prices of the local and imported goods is even higher. That is,
p∗ (τc) = τ 1/2p∗ (c) > p∗ (c) if c /∈ (ĉ/τ, ĉ).

From (27), a fall in trade cost does not affect entry M . However, the firm selection
becomes tougher as the total mass of surviving firms in a country, MG (p̂H), falls since
p̂H decreases. By contrast, the total number of goods consumed by the poor and the rich
increase with smaller trade costs. Indeed, the total numbers of consumed goods are given
by

|ΩH | = MG (p̂H) + (n− 1)MG (p̂H/τ) and |ΩL| = MG (ĉ) + (n− 1)MG (ĉ/τ) .

Under Pareto cost distribution, this simplifies to

|ΩH |
|ΩA

H |
=
|ΩL|
|ΩA

L |
=
[
1 + (n− 1) τ−κ

] 1
κ+1 ,

where the superscript A again refers to autarky. Thus, as trade costs fall, both the rich and
the poor consume a wider set of goods. However, the measures of their baskets of goods keep
the same proportionality between each other.

All the previous results are valid for both lower trade costs and larger trade networks.
Things are a little bit different for the variables that are not solely determined by the
term (n− 1) τ−κ. This is the case of the quantity of consumed goods and the number of
varieties.

Let us first look at the number of local and imported goods sold to the whole local
population: MG (ĉ) and MG (ĉ/τ). This is also the number of local and imported goods
consumed by the poor. From (27), we see that the cut-off ĉ always falls with smaller τ and
larger n. Hence, trade integration leads to a reduction of the set of local goods consumed
by the poor. Also, it readily comes that the cutoff ĉ/τ drops with larger n. This is because
an enlargement of the trade network entices consumers to buy import from new countries
and substitute for the existing imports. However, it can be checked that the cutoff ĉ/τ rises
with smaller τ . The poor therefore purchase a wider set of foreign goods because those
goods are less costly to ship. Hence, lower trade costs and larger trade networks have opposite
effects on the poor’s basket of imports from a specific country. However, it can be shown that
the total set of imports (n− 1)MG (ĉ/τ) expands with n.

We now look at the individual consumption. By (1), the individual consumption for a
good by a rich or poor worker can be written as

qh (c) =

(
p̂h

p∗ (c)
− 1

)
, h ∈ {H,L}
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if p∗ (c) ≤ p̂h and zero otherwise. The same expression with p∗ (τc) holds for imports.
Since local goods are cheaper than imports, its is clear that individuals consumes larger
quantities of the former than the latter. On the one hand, compared to autarky, the con-
sumption of local goods produced at cost c is given by the following relationship:

qh (c) + 1

qAh (c) + 1
=
p̂h
p̂Ah

pA (c)

p∗ (c)
, h ∈ {H,L}. (29)

Applying the above results yields

qh (c) + 1

qAh (c) + 1
=


(

1
1+(n−1)τ−κ

) 1
2(κ+1)

if c /∈ (ĉ, ĉA)(
rA

αHrA+αL

)−1/2 (
1

1+(n−1)τ−κ

) 1
2(κ+1)

if c ∈ (ĉ, ĉA)
, (30)

h ∈ {H,L}. Hence, local consumption falls with lower trade costs and larger trade network.
On the other hand, the consumption of imports produced at cost c is given by the re-

lationship (29) with p∗ (τc) replacing p∗ (c). Because imported goods are more expensive
than local ones, consumers purchase a lower quantity of each good. Indeed, the expres-
sions in (30) must then be divided by τ 1/2 and the cut-off intervals replaced by (ĉ/τ, ĉA/τ).
As a result, one can check that the [qh (τc) + 1] /

[
qAh (c) + 1

]
decreases with larger n but

increases with smaller trade costs for any cost slightly away from the cost threshold ĉ/τ .
The presence of imports from a new country entices consumers to substitute for the ex-
isting imports. Also, a fall in trade cost reduces import prices and entices consumers to
purchase a larger quantity of each imported good. Hence, trade integration does not have
the same effect on individual consumption of imports whenever it stems from lower trade cost or
larger trade network.

We summarize the above results in the following proposition:

Proposition 6. Lower trade costs and larger trade networks (i) reduce product prices everywhere
except those of the firms switching to target the higher income group, (ii) diminish the mass of
surviving firms whereas the mass of entrants is unchanged, (iii) expand the set of goods consumed
by both the rich and the poor, and (iv) reduce the quantity and the set of individual consumption
of local goods. Also, lower trade costs increase the quantity and the set of individual consumption
of imports whereas larger trade networks reduce them.
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From the derivation in Appendix G, equilibrium utility levels can be written as

U (sH) =
M (1 + (n− 1)τ−κ) p̂κL

cκM

[
aκ ln

(
r1/2 (αHr + αL)−1/2

)
+
rκ

2κ

]
(31)

U (sL) =
M (1 + (n− 1)τ−κ) p̂κL

cκM

[
aκ

2κ
− aκ ln

[(
1− α1/2

H

)
a+ (αHar)

1/2
]]
. (32)

By using (25) and comparing (20-21) and (31-32), we have

U (sh) =
(
1 + (n− 1)τ−κ

) 1
κ+1 UA (sh) ,

where h = H,L, and UA (sh) denotes the utility level under autarky. Trade integration
therefore raises equilibrium utility levels of high and low income groups in the same
proportion. The utility difference between those groups therefore rises in that same pro-
portion.

How does the above utility increase due to trade integration compared to an increase
in income? Let us fix income ratio sH/sL so that r and a remain constant. A percent-
age decrease in trade cost yields the same change in utility resulting from a percentage
increase in average income if it satisfies the following relationship:[

d lnU (sh)

d ln τ

]
sL fixed

d ln τ = −
[
d lnU (sh)

d ln sL

]
τ fixed

d ln sL.

We have

[
d lnU (sh)

d ln τ

]
sL fixed

=
d ln (1 + (n− 1)τ−κ)

d ln τ
+
d ln p̂κL
d ln τ

= − κ

κ+ 1

(n− 1) τ−κ

1 + (n− 1) τ−κ
.

From (26) and (31), we observe that U (sh) is proportional to M , which, in turn, is propor-
tional to sL. Hence, we get [

d lnU (sh)

d ln sL

]
τ fixed

= 1.

Using the above results, we obtain

µ ≡ d ln sL
d ln τ

=

[
d lnU(sh)
d ln τ

]
sL fixed

−
[
d lnU(sh)
d ln sL

]
τ fixed

=
κ

κ+ 1

(n− 1) τ−κ

1 + (n− 1) τ−κ
.

This figure is to be interpreted as follows: a one percent decrease in trade cost τ is
equivalent to µ percent increase in average income, keeping constant the income inequal-
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ity. Because utility U (sh) is proportional to income, µ is also the negative of the elastic-
ity of utility to trade cost. For example, with n = 2, τ = 1.7 and κ = 3.03,15 we have
µ = 0.13. That is, a 1% fall in trade cost is equivalent to a 0.13% percent rise in average
income, would income ratio (sH/sL) be constant. The effect is nevertheless stronger for
lower trade costs and larger trade networks.

4.2 Income Distribution

We know by the structure of (24) to (26) that Proposition 4 hold in the open economy. That
is, a mean-preserving spread of the income distribution increases the choke price of each
country’s high income group, reduces the country’s (unweighted) average productivity
and reduces the set of goods consumed by the poor relative to that by the rich in each
country. The question then becomes whether lower trade costs amplify or attenuate the
effect of a mean preserving spread of the income distribution.

A mean preserving spread of the income distribution (higher v at constant s) raises
the highest income sH and reduces the lowest income sL. In the open economy, each
country (unweighted) average productivity is related to the opposite of its average cost∫ p̂H

0
cMdG (c) /

∫ p̂H
0

MdG (c), or equivalently,
∫ p̂H

0
cdG (c) /

∫ p̂H
0

dG (c), which increases with
a higher choke price p̂H but is independent of the number of entrants, M . Hence, we need
only to study the effect of a higher p̂H , irrespective of the numbers of entrants and firms.
Because p̂H = rp̂L, we must discuss the effects of the mean preserving spread on r and p̂L
in equations (24) and (25). Let us consider the changes in income inequality sH/sL from
saH/s

a
L to sbH/s

b
L. By (24), the choke price ratio shifts from ra to rb where the superscripts a

and b refer to the respective income ratios. By (25), we also have

p̂aL
p̂bL

=

(
Γ2 (ra;κ, αH)

Γ2 (rb;κ, αH)

)− 1
κ+1

,

which is independent of trade cost τ . Multiplying all terms by ra/rb we can write

p̂aH
p̂bH

=
rap̂aL
rbp̂bL

=
ra

rb

(
Γ2 (ra;κ, αH)

Γ2 (rb;κ, αH)

)− 1
κ+1

,

where the first equality stems from the definition of r = p̂H/p̂L. Hence the ratios of choke
prices are also independent of trade costs τ . Finally, since we know that choke prices are
lower for smaller trade costs, we can infer that the difference between the choke prices
p̂aH and p̂bH must also be smaller for smaller trade costs. As a result, the average cost

15These parameter values are the ones adopted in our quantitative analysis in Section 5.
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∫ p̂H
0

cdG (c) /
∫ p̂H

0
dG (c) increases less with lower trade cost when income inequality is

higher. Since the opposite holds for the average productivity, we can state the following:

Proposition 7. A mean preserving spread of income distribution reduces less each country’s (un-
weighted) average productivity when trade costs are smaller.

Stated differently, income redistribution from the rich to the poor improves each coun-
try’s average productivity less under deeper trade integration. Also, the effects of income
inequality on average productivity are the strongest under autarky (τ → ∞). The in-
tuition is that trade expands product diversity and induces tougher firm selection. The
selection cost-cutoffs are smaller under trade so that the mass of surviving firms MG(p̂H)

is smaller but those firms are more cost effective. The number of unsold goods is larger
within the global economy than n autarkic economies. Hence, when the rich gets a higher
income, she can spread her consumption towards the cheapest unsold goods in all coun-
tries rather than having to concentrate on the domestic unsold goods. In the end, con-
sumed goods are produced at a lower cost.

5 Quantitative Analysis

5.1 Calibration

To calibrate the model, we attribute values to the nine parameters (αH , sL, sH , cM , f, τ, κ, n,N).
We calibrate on a 2015 US-like baseline economy where top 10% income individuals earn
7.9 more than the bottom 90% so that we set αoH = 0.10 and soH/s

o
L = 7.9 where the symbol

o denotes the baseline values.16 Without loss of generality, we can normalize the popu-
lation size and the cost to unity such that N o = 1 and coM = 1. We focus on two (blocks
of) symmetric countries (no = 2) and set the iceberg trade cost to the value τ o = 1.7 as
estimated in Novy (2013).17 We identify the model on three additional empirical relation-
ships about firms’ markups, survival and employment rates. First, following empirical

16The income ratio is calculated from top 10 percent income share data in 2014 for the US from the World
Inequality Database.

17For examples, Novy (2013) estimated that the trade costs τ in 2000 between the US and Germany and
between the US and the UK are 1.70 and 1.63, respectively. Using the same approach, the same set of
estimates in 2014 reported by the World Bank’s International Trade Costs data set are 1.723 and 1.704.
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studies,18 we impose an average markup on local sales mrkupo of 115%. That is,

mrkupo =
κ

κ− 1/2


[
(αoHr + αoL)1/2 − r1/2

] [
(αoHr + αoL)1/2 − αo1/2H r1/2

]2κ−1

(
1− αo1/2H

)2κ−1

rκ
+ 1

 ,

where the right-hand side is the unweighted average markup (
∫ p̂H

0
p
c
dG). This identity

gives a relationship between κ and r as does the identity (24). Solving simultaneously
those two identities allow us to pin down the values of ro and κo. In turn, we get the
values Γo1 ≡ Γ1 (ro;κo, αoH) and Γo2 ≡ Γ2 (ro;κo, αoH). We finally make use the value of the
firm’s survival rate survo = G (p̂H) of 90%19 and average employment per firm emplo =

N/(MG(p̂H)) of 66 workers as reported in the 2015 US census data (148 ∗ 106 workers in
2.22 ∗ 106 firms having more than 5 employees). Using (25) and (26), we compute

survo =

[
1 + τ−κoo

f
r−(κo+1)
o Γo2

]− κo
κo+1

emplo ∗ survo =
f

sL

Γo1
Γo2
,

which allow us to pin down f o and soL. This calibration process permits to recover the
baseline economy parameter values ro = 1.539, κo = 3.03, f o = 0.00887 and soL = 0.00036.
In turn this yields ao = 0.860 (= ĉ/p̂L). As an external validity check, we compute a 83%

share of domestic expenditure on domestic goods, which fits well the reality of the US
economy.20

5.2 Effects of Income Inequality

Table 2 presents the values of economic variables when workers incomes (or skills) in-
creasingly spread about their mean. The first row presents the value of the income ratio
that rises from 1 (second column) to the baseline model 7.9 (sixth column) and then to 3/2

of this value (eighth column). The second row displays the respective values of the Gini
coefficients. The next three lines show the value of skill endowment and their mean for
the sake of completeness.

18For example, using Taiwanese manufacturing data and the markup-estimation approach by De Loecker
and Warzynski (2012), Edmond, Midrigan, and Xu (2015) find an unweighted average markup of 1.13.

19We take the average exit rate as 0.1. See, for example, Klepper and Thompson (2006).
20Using information on domestic absorption and imports in Penn World Table 9.0, one can easily calculate

the domestic expenditure share, and this share for the US in 2014 is 0.828.
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sH/sL 1. 2.14 3.57 5.41 7.9 11.42 16.8

Gini 0.00 0.09 0.18 0.28 0.37 0.46 0.55
Top income share 0.10 0.19 0.28 0.38 0.47 0.56 0.65
sL (thousands) 0.60 0.54 0.48 0.42 0.36 0.30 0.23
sH (thousands) 0.60 1.16 1.71 2.26 2.82 3.37 3.93
Mean (αHsH + αLsL; thousands) 0.60 0.60 0.60 0.60 0.60 0.60 0.60
Ave. productivity (weighted by cost) 2.73 2.72 2.71 2.67 2.61 2.53 2.43
UL vs. UL base 1.55 1.41 1.28 1.14 1.00 0.86 0.71
UH vs. UH base 0.51 0.76 0.90 0.98 1.00 0.98 0.91
Equivalent variation L (relative to soL) 0.69 0.51 0.34 0.17 0.00 -0.16 -0.33
Equivalent variation H (relative to soH) -0.30 -0.15 -0.06 -0.01 0.00 -0.02 -0.06

Table 2: Quantitative impact of mean preserving spreads of income.

In Section 3 our empirical analysis suggests a negative correlation between average
productivity and income dispersion. The theoretical analysis in Section 3.4 shows that
the average productivity falls with mean-preserving spreads. Because further analysis
on productivity is analytically difficult, we resort to the quantitative analysis here. The
seventh row in Table 2 shows reports the quantitative values for average productivity
weighted by cost, given by ∫ p̂H

0
(1/c)cQ (p∗ (c)) dG(c)∫ p̂H
0

cQ (p∗ (c)) dG(c)
,

which simplifies the total output over total cost. The observation of this row confirms
our previous analyses: average productivity falls with stronger income inequality. Ce-
teris paribus, rich consumers purchase larger quantity per good and add goods that are
more costly to make into their consumption basket as their income rises. As richer con-
sumers buy more quantity and larger number of goods, their effect on total consumption
dominates so that firms on average produce more costly goods.

The eighth and ninth lines of Table 2 compare the achieved utility levels compared to
the baseline levels. The poor’ utility monotonically falls with a mean preserving spread
of income distribution as they get lower incomes. Interestingly, the rich’s utility first in-
creases and then decreases with higher income dispersion. Too strong income inequality
may thus turn out to be a disadvantage for the rich. The intuition balances the effects of
their larger purchasing power and larger number of expensive products. First, when in-
come inequality strengthens, the rich get larger incomes and raise their demands so that
they are willing to consume more in quantity and number of products. Second, income
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inequality reduces the poor’ incomes and demands. This entices some firms with cost
lower than ĉ shift their consumer target from all individuals to only the rich ones. As a
consequence, those firms raise their prices, which negatively affects the rich’s consump-
tion. In other words, for such products, the rich can no longer “hide behind the poor”
and benefit from the low prices targeted to poorer people. Firms’ price discrimination
hits further the rich. Price hikes can be large because richer individuals have lower de-
mand elasticity. One can then observe from the eighth row of Table 2 that the rich gain
from larger income discrepancies only for income ratio sH/sL lower than the baseline
level 7.9. Above that level, they are hurt by the above price hikes.

Finally, the last two rows of Table 2 display the relative equivalent variations as the per-
centage of additional income needed in the baseline model21 to match the utility level
obtained in another inequality configuration. To allow comparison, those measures take
the baseline equilibrium price system and its product space as givens. Although they are
a partial equilibrium measures, relative equivalent variations are better suited to express
the magnitude of the impact of welfare inequality on the poor and rich. Hence, going
from the sixth to the fifth column means to move from the baseline income ratio of 7.9 to
5.41. This implies a fall of 9 points in the Gini coefficient, a rise of the poor’s income from
0.36 to 0.42 and a fall in the rich’s income from 2.82 to 2.26, which amounts respectively
for about 16% and−20% of their baseline incomes. However, the relative equivalent vari-
ations are 17% and −1% respectively for the poor and rich. Hence, the negative impact
on the rich is much lower than her actual income change. In the same vein, going from
the sixth to the second column implies the most drastic move from the baseline model
to full income redistribution (equal incomes). Poor’s income moves up from 0.36 to 0.60,
that is, for about 67% of her baseline income. The rich’s income moves down from 2.82

to 0.60, which is a 78% income drop. However, in terms of equivalent variations, the rich
lose only 30% while the poor gain 69% of their purchasing power. Finally, going from the
sixth to the seventh or eighth column implies higher inequality compared to the baseline
model. Yet, this move harms both the poor and rich in terms of utility level and equivalent
variation. This is undesirable for either the social planner or each income group.

5.3 Effects of Trade Cost

Table 3 presents main economic indicators for alternative trade costs, keeping the other
parameters of the baseline model. Going from the left to the right hand, the columns
successively report the cases of free trade, τ = 1, a 10% fall in trade cost on the baseline

21That is, given the set of consumed goods and prices at the baseline.
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model, the trade cost of the baseline model, τ = 1.7, and the trade cost at the autarky limit,
τ → ∞. (Weighted) average productivity falls with higher trade costs as less productive
firms survive in the markets. It can be shown that this property also holds when average
productivity is weighted by sales. Lowering trade cost by 10% from the baseline model
augments productivity by 1.5% (= 2.652/2.612 − 1). Going from autarky to free trade
increases average productivity by 16% (=2.497/2.965− 1). The result that trade liberaliza-
tion induces higher average productivity is consistent with the firm-selection literature a
la Melitz (2003). The expenditure share on domestic goods falls as the economy moves
from autarky to free trade. Lowering trade cost by 10% reduces it by 6% (= 0.784/0.833−1)
and substantially raises the share of imports by 29% (= (1− 0.784)/(1− 0.833)− 1)).

The fourth and fifth rows show the low and high income groups’ utility levels relative
to their baseline level. As noted in Section 4.1, utility levels are affected in same propor-
tions by trade cost if the income of each group is held constant. Lowering trade cost by
10% raises utility by 1.5% while moving from autarky to free trade increases it by about
18% (1.135/0.956 − 1). The negative of the elasticity of utility to trade cost is thus 0.15

(= 1.5/1.5), which is quite close to the point elasticity µ = 0.13 mentioned in Section 4.1.
The last two rows display the relative equivalent variations. Lowering trade cost by

10% is equivalent to an increase of 1.8% of the poor’s income and an increase of 1.0% of
the rich’s. Moving from autarky τ = ∞ to the baseline trade cost τ = 1.7 is equivalent
to increases of poor and rich’s real incomes by 5.4% (= 1/ (1− 0.052) − 1) and 2.9% (=
1/ (1− 0.028) − 1), respectively. Trade liberalization therefore benefits more to the poor
because the poor consume more heavily on traded goods. A similar point was made by
Fajgelbaum and Khandelwal (2016).

Trade cost τ 1.0 1.7×90% 1.7 ∞
Ave. productivity (weighted by cost) 2.965 2.652 2.612 2.497
Expenditure share on domestic goods 0.5 0.784 0.833 1.
UL vs. UL base 1.135 1.015 1.000 0.956
UH vs. UH base 1.135 1.015 1.000 0.956
Equivalent variation L (relative to soL) 0.160 0.018 0.000 -0.052
Equivalent variation H (relative to soH) 0.087 0.010 0.000 -0.028

Table 3 Quantitative impact of trade cost
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6 Conclusion

In this paper, we propose a theory of how income inequality may affect aggregate produc-
tivity and welfare in a global economy via selection under a non-homothetic preference
with pro-competitive effects. We find that there is a negative cross effect of one group’s
income on the other group’s consumption. We also find that a mean-preserving spread of
income reduces average productivity (both weighted and unweighted) through the soft-
ening of firms’ selection and the shuffling of the mass of consumption from low-cost to
high-cost goods.

In the quantitative analysis, it is shown that a too large mean-preserving spread of
income may harm the rich. Moreover, when measuring welfare in real terms by equiv-
alent variation, we find that a reallocation of nominal income increases the poor’s real
income more than the fall of the rich’s real income. Taken together, regardless of whether
efficiency is measured in aggregate productivity or welfare, we find the contrary to the
equity-efficiency trade-off is true in our model.

Our result that the negative effect of income inequality on average productivity is mit-
igated by international trade is intriguing because most theoretical and empirical studies
point to the negative effect of globalization on equity. Of course there is actually no con-
flict because the directions of the causal relationships are different. Not only our model is
consistent with the general understanding that trade helps the poor in terms of consump-
tion, but it also suggests another positive side of trade: with higher income, the rich can
spread their extra consumption over goods from various countries, instead of having to
concentrate their consumption domestically under autarky. Collectively, a more efficient
part of each country’s cost distribution is sampled in the presence of trade.
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Appendix A: Consumers’ demands

Individuals are endowed with utility function U =
∫
ω∈Ω

ln (1 + q (ω)) dω over the com-
modity space Ω ⊂ R. Note that, firm entry limits the mass of commodities that are
offered. Let Ω be the set of commodities that are actually offered and associated with
a price p (ω), ω ∈ Ω. Other commodities ω ∈ Ω\Ω are not offered and cannot be con-
sumed so that q(ω) = 0 for ω ∈ Ω\Ω. An individual in the income group h chooses the
consumption q (ω), ω ∈ Ω that maximizes her utility U subject to her budget constraint∫
ω∈Ω

p (ω) q (ω) dω = sh. The Lagrangian function of individual h with income sh is there-
fore defined as

Lh =

∫
ω∈Ω

ln (1 + q (ω)) dω + λh

(
sh −

∫
ω∈Ω

p (ω) q (ω) dω

)
Ωh ⊆ R. This is a concave function so that the following first order condition yields the
consumer’s best consumption choice:

∂L
∂q(ω)

= 1
q(ω)+1

− λhp (ω) = 0 if q (ω) > 0
∂L
∂q(ω)

= 1
q(ω)+1

− λhp (ω) < 0 if q (ω) = 0

The set of consumed varieties is given by Ωh ≡ {ω : q (ω) > 0} = {ω : p (ω) < 1/λh}. For
ω ∈ Ωh, the first-order condition entails

qh (ω) =
1

λhp (ω)
− 1,

and thus

λh =

∫
ω∈Ωh

dω

sh +
∫
ω∈Ωh

p (ω) dω
.

Plugging λh back into the demand function, we obtain individual demand function

qh (ω) =
p̂h
p (ω)

− 1,

where
p̂h ≡

1

λh
=
sh + Ph
|Ωh|

is the choke price of consumer with income sh, Ph ≡
∫
ω∈Ωh

p (ω) dω is the aggregate price
index for the goods consumed by s and |Ω (s)| =

∫
ω∈Ωh

dω is the measure of the set of
goods consumed by individual h. Combining the above results, we obtain (1) and (2).
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Note that the choke price p̂h is the highest price that h is willing to pay to purchase any
nonnegative amount of a variety. When sh increases, λh falls and p̂h rises so that Ωh ex-
pands. As a result, one gets sH ≥ sL ⇐⇒ sH ≤ sL ⇐⇒ p̂H ≥ p̂L.

Finally given that q(ω) = 0, ω /∈ Ωh, the consumer’s utility can successively be rewrit-
ten as

Uh =

∫
ω∈Ωh

ln (1 + q (ω)) dω +

∫
ω∈Ω\Ωh

ln (1) dω =

∫
ω∈Ωh

ln (1 + q (ω)) dω

The indirect utility is thus equal to

Vh =

∫
ω∈Ωh

ln

(
sh + Ph
|Ωh|

1

p (ω)

)
dω (33)

Appendix B: Firms’ choices

The problem for a firm with cost c is

max
p

π = (p− c)Q (p)

=

 (p− c)αHN
(
p̂H
p
− 1
)

if p ∈ [p̂L, p̂H)

(p− c)N
(
p̂HL
p
− 1
)

if p ∈ [0, p̂L)
.

For p ∈ [0, p̂L), the firm sells to both groups and choose the price p∗(c) = c1/2 (p̂HL)1/2

and markup (p̂HL/c)
1/2. The price increases and the markup decreases with higher mar-

ginal costs c, showing a pro-competitive effect. The firm gets a profit equal to π∗HL(c) =

N
[
(p̂HL)1/2 − c1/2

]2

. For p ∈ [p̂L, p̂H), a firm sells only to high income consumers and set

a prices p∗(c) = c1/2p̂
1/2
H and markup (p̂H/c)

1/2. Prices increase and markups decrease in c.

The firm gets a profit equal to π∗H(c) = αHN
[
(p̂H)1/2 − c1/2

]2

. The firm chooses to charge

p∗(c) = c1/2 (p̂HL)1/2 if and only if π∗HL(c) ≥ π∗H(c), which is equivalent to

c1/2 ≤ ĉ1/2 ≡ (p̂HL)1/2 − (αH p̂H)1/2

1− α1/2
H

. (34)

This argument yields (6) and (5). Observe that pH > pHL for any c. So, there is upward
jump of the price schedule p∗(c) at ĉ.

In the product market equilibrium, it must be that each income group purchases the
goods that are targeted to them. In particular, the low income consumers should buy
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only the goods produced at cost in the range [0, ĉ]. This means that their choke price p̂L
should satisfy p∗ (ĉ− 0) < p̂L < p∗ (ĉ+ 0). We show that this condition holds. Indeed,
since p∗(ĉ − 0) = ĉ1/2 (p̂HL)1/2 and p∗(ĉ + 0) = ĉ1/2p̂

1/2
H the previous condition becomes

ĉ1/2 (p̂HL)1/2 < p̂L < ĉ1/2p̂
1/2
H . Plugging the value of ĉ and defining r = p̂H/p̂L with r > 1

since p̂H > p̂L, we get the following inequalities

(αHr + αL)− (αHr (αHr + αL))1/2 < 1− α1/2
H < ((αHr + αL) r)1/2 − (αH)1/2 r

Because αH +αL = 1, we have that the left-hand side and right-hand side are equal to the
middle term for r = 1. It can be shown that the left-hand side falls with higher r while
the right-hand side rises with it. Hence the inequalities are always satisfied.

For all goods to be supplied by firm with cost c to poor individuals, it must also that
c < p̂L. This is obtained if ĉ < p̂L. Plugging the value of ĉ and using r = p̂H/p̂L we get the
condition:

((αHr + αL))1/2 − (αHr)
1/2 < 1− α1/2

H

where the left-hand side decreases with larger r and is equal to the right-hand side at
r = 1. So the condition is always satisfied.

Appendix C: Existence

The equilibrium is represented by the vector of variables (p̂H , p̂L,M) with p̂H ≥ p̂L ≥ 0

and M > 0 that satisfy the market conditions (8) and (9) and entry conditions (12):

eH (p̂H , p̂L)− sH
M

= 0 (35)

eL (p̂H , p̂L)− sL
M

= 0 (36)

π (p̂H , p̂L)− f

N
= 0 (37)

where

eH (p̂H , p̂L) =

∫ ĉ

0

(
p̂H − (αH p̂H + αLp̂L)1/2 c1/2

)
dG (c) +

∫ p̂H

ĉ

(
p̂H − p̂1/2

H c1/2
)

dG (c)

eL (p̂H , p̂L) =

∫ ĉ

0

(
p̂L − (αH p̂H + αLp̂L)1/2 c1/2

)
dG (c)
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are the consumers’ average expenditures per available variety and

π (p̂H , p̂L) =

∫ p̂H

0

max

{(
(αH p̂H + αLp̂L)1/2 − c1/2

)2

,αH
(
p̂

1/2
H − c1/2

)2
}

dG (c)

is the expected operational profit before entry. In those equations ĉ is implicitly given by
the solution of

ĉ1/2 =
(p̂HL)1/2 − (αH p̂H)1/2

1− α1/2
H

with ∂ĉ/∂p̂H < 0 < ∂ĉ/∂p̂H . It can readily be shown that πH > 0, πL > 0 and eLL > 0 > eLH

where ehl = ∂eh/∂p̂l and πl = ∂π/∂p̂l, h, l ∈ {H,L}.
Using (35) and (36), we can rewrite the equilibrium conditions as

H(p̂H , p̂L,M) ≡M − αHsH + αLsL
αHeH + αLeL

= 0 (38)

F (p̂H , p̂L) ≡ eH
sH
− eL
sL

= 0 (39)

Π (p̂H , p̂L) ≡ π (p̂H , p̂L)− f

N
= 0 (40)

The equilibrium is then given by the vector (p̂H , p̂L,M) that solves (38), (39) and (40).
Note that the choke prices are solutions of (39) and (40) while the mass of entrants is the
solution of (38) at equilibrium choke prices.

To show the existence of the equilibrium, note that, since the eH , eL and π are con-
tinuous functions of (p̂H , p̂L,M), the expressions in conditions (40), (38) and (39) are also
continuous onR+3. It then suffices to prove that each expression has opposite sign on two
points in the support of (p̂H , p̂L,M) ∈ R+3 with p̂H ≥ p̂L ≥ 0 and M > 0.

First, suppose that (p̂H , p̂L,M) = (y, 0,M). Then, ĉ = 0 so that eH(y, 0) =
∫ y

0

(
y − y1/2c1/2

)
dG (c) > 0 and eL(y, 0) = 0. We compute

Π(y, 0) = αH

∫ y

0

(
y1/2 − c1/2

)2
dG (c)− f

N

H(y, 0,M) = M − αHsH + αLsL
αH
∫ y

0
(y − y1/2c1/2) dG (c)

F (y, 0) =
1

sH

∫ y

0

(
y − y1/2c1/2

)
dG (c)

If y is small enough, we have Π(y, 0) < 0, H(y, 0,M) < 0 and F (y, 0) > 0.
Second, we consider that G(c) has a bounded support and finite mean. That is, G :

[0, cM ] → [0, 1] such that E(c) =
∫ cM

0
cdG (c) < ∞. We define p̂L = x, p̂H = rx, p̂HL =
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(αHr + αL)x and ĉ = axwhere 1 ≤ r <∞ and a1/2 ≡
[
(αHr + αL)1/2 − α1/2

H r1/2
]
/
(

1− α1/2
H

)
∈

(0, 1]. We further set x such that cM < ax < x < rx. This implies that
∫ rx

0
dG =

∫ cM
0

dG = 1,∫ ax
0
c1/2dG =

∫ cM
0

c1/2dG (c) = E(c1/2), and
∫ rx
ax
c1/2dG (c) =

∫ cM
cM

c1/2dG (c) = 0. So, when
(p̂H , p̂L) = (rx, x) , we have

eH (rx, x) = rx− (αHr + αL)1/2 x1/2E(c1/2)

eL (rx, x) = x− (αHr + αL)1/2 x1/2E(c1/2)

while

Π (rx, x) =
[
(αHr + αL)x− 2 (αHr + αL)1/2 x1/2E(c1/2) + E(c)

]
− f

N

H(rx, x,M) = M − αHsH + αLsL

(αHr + αL)x− (αHr + αL)1/2 x1/2E(c1/2)

F (rx, x) =

(
r

sH
− 1

sL

)
x+

(
1

sL
− 1

sH

)
(αHr + αL)1/2 x1/2E(c1/2)

For x sufficiently large, it comes Π (rx, x) > 0 and H(rx, x,M) > 0 while F (rx, x) < 0 if
r < sH/sL.

We can then choose five scalars, x large enough, y small enough, r < sH/sL, M ′ >

0 and M ′′ > 0, such that the functions Π, H and F have opposite signs at the points
(p̂H , p̂L,M) = (rx, x,M ′) and (y, 0,M ′′). This proves the existence of an equilibrium.

Appendix D: Income and Demand

In this appendix, we show how changes in income affect choke prices. Differentiating
totally (40) and (39), we get[

eHHs
−1
H − eLHs−1

L eHLs
−1
H − eLLs−1

L

πH πL

]
·
[

dp̂H

dp̂L

]
=

[
−eHds−1

H + eLds−1
L

0

]

where ehl ≡ ∂eh/∂p̂l and πl ≡ ∂π/∂p̂l, h, l ∈ {H,L}. In Appendix C, it has been shown that
πH > 0, πL > 0 and eLL > 0 > eLH . Under the assumption eHH > 0 > eHL, the determinant
of the matrix in the above LHS, ∆ =

(
eHHs

−1
H − eLHs−1

L

)
πL −

(
eHLs

−1
H − eLLs−1

L

)
πH is

strictly positive. We have[
dp̂H/ds

−1
H

dp̂L/ds
−1
H

]
=
eH
∆

[
−πL
πH

]
and

[
dp̂H/ds

−1
L

dp̂L/ds
−1
L

]
=
eL
∆

[
πL

−πH

]
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Noting that eh = sh/ (M) by (35) and (36) so that
(
dp̂h/ds

−1
h

)
= ehp̂hM

(
d lnp̂h/d lns−1

h

)
,

h = H,L, we can rewrite the above expression as[
d lnp̂H/d lnsH

d lnp̂L/d lnsH

]
=

1

∆

[
πL

−πH

]
and

[
d lnp̂H/d lnsL

d lnp̂L/d lnsL

]
=

1

∆

[
−πL
πH

]

We then get

d lnp̂H
d lnsH

= −d lnp̂H
d lnsL

=
1

∆

πL
p̂H

> 0 and
d lnp̂L
d lnsL

= −d lnp̂L
d lnsH

=
1

∆

πH
p̂L

> 0 (41)

Appendix E: Pareto productivity distribution

Equilibrium Conditions

Assume Pareto productivity, which translate to cost distribution with the c.d.f given by
G (c) =

(
c
cM

)κ
for c ∈ [0, cM ] and κ ≥ 1. The equilibrium is the vector (p̂H , p̂L,M) that

solves (40), (38) and (39). With some algebraic manipulations, these conditions are trans-
lated to

0 = Φ

(
r;κ, αH ,

sH
sL

)
(42)

p̂L = c
κ
κ+1

M

(
N

f
Γ2 (r;κ, αH)

)− 1
κ+1

(43)

M =
NsL
f

Γ2 (r;κ, αH)

Γ1 (r;κ, αH)
, (44)

where

Φ

(
r;κ, αH ,

sH
sL

)
≡ rκ+1

2κ+ 1

(
1− α1/2

H

)2κ+1

[
(αHr + αL)1/2 − α1/2

H r1/2
]2κ −

sH
sL

(
1− α1/2

H

)

+
2κ
[
r1/2 +

(
sH
sL
− 1
)

(αHr + αL)1/2
] [

(αHr + αL)1/2 − α1/2
H r1/2

]
2κ+ 1

,

Γ1 (r;κ, αH) ≡
(

(αHr + αL)1/2 − α1/2
H r1/2

1− α1/2
H

)2κ

− 2κ (αHr + αL)1/2

2κ+ 1

(
(αHr + αL)1/2 − α1/2

H r1/2

1− α1/2
H

)2κ+1

,
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and

Γ2 (r;κ, αH) =
αHr

κ+1

(κ+ 1) (2κ+ 1)
+ αL

(
(αHr + αL)1/2 − α1/2

H r1/2

1− α1/2
H

)2κ

+
4κ
[
αHr

1/2 − (αHr + αL)1/2
]

2κ+ 1

(
(αHr + αL)1/2 − α1/2

H r1/2

1− α1/2
H

)2κ+1

+
αLκ

κ+ 1

(
(αHr + αL)1/2 − α1/2

H r1/2

1− α1/2
H

)2κ+2

,

Points 1 and 2 in Proposition 5

For Points 1 and 2, it suffices to show that (A0) and (A1) holds under Pareto productivity,
as Lemma 1 and Propositions 3 and 4 can be therefore applied. Under G (c) = (c/cM)κ,
where c ∈ [0, cM ] and κ > 1, it is immediate that E(c) = κ

cκM

∫ cM
0

cκdc = κcM
κ+1

< ∞, and
hence (A0) holds. The next task is to show that ∂eH/∂p̂H > 0 and ∂eH/∂p̂L < 0. Observe
that we can rewrite eH (p̂H , p̂L) as

eH (p̂H , p̂L) =
κ

cκM

[∫ ĉ

0

(
p̂H − (αH p̂H + αLp̂L)1/2 c1/2

)
cκ−1dc+

∫ p̂H

ĉ

(
p̂H − p̂1/2

H c1/2
)
cκ−1dc

]
∝ p̂H

∫ p̂H

0

cκ−1dc−
[
(αH p̂H + αLp̂L)1/2

∫ ĉ

0

cκ−1/2dc+ p̂
1/2
H

∫ p̂H

ĉ

cκ−1/2dc

]

=
1/2

κ (κ+ 1/2)
p̂κ+1
H − 1

κ+ 1/2

(
p̂

1/2
HL − p̂

1/2
H

) [
(p̂HL)1/2 − (αH p̂H)1/2

]2κ+1

(
1− α1/2

H

)2κ+1 .

Thus,

∂eH/∂p̂L

∝ −αLp̂
−1/2
HL

2

{[
(p̂HL)1/2 − α1/2

H p̂
1/2
H

]2κ+1

+ (2κ+ 1)
(
p̂

1/2
HL − p̂

1/2
H

) [
(p̂HL)1/2 − α1/2

H p̂
1/2
H

]2κ
}

< 0.
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And,

∂eH/∂p̂H

∝ 1/2 (κ+ 1)

κ (κ+ 1/2)
p̂κH

−

(
αH
2
p̂
−1/2
HL − 1

2
p̂
−1/2
H

)
×
[
p̂

1/2
HL − (αH p̂H)1/2

]
+ αH(2κ+1)

2

(
p̂

1/2
HL − p̂

1/2
H

)(
p̂
−1/2
HL − (αH p̂H)−1/2

)
(κ+ 1/2)

(
1− α1/2

H

)2κ+1 [
(p̂HL)1/2 − (αH p̂H)1/2

]−2κ

The above is positive if the second term is positive, that is, if(
αH
2
p̂
−1/2
HL −

1

2
p̂
−1/2
H

)
×
[
p̂

1/2
HL − (αH p̂H)1/2

]
+
αH (2κ+ 1)

2

(
p̂

1/2
HL − p̂

1/2
H

)(
p̂
−1/2
HL − (αH p̂H)−1/2

)
< 0.

The above is true iff

(2κ+ 2)
(
αH + α

1/2
H

)
<
[
1 + (2κ+ 1)α

1/2
H

](αH p̂H + αLp̂L
p̂H

)1/2

+
[
α

3/2
H + αH (2κ+ 1)

](αH p̂H + αLp̂L
p̂H

)−1/2

.

Let y ≡
(
αH p̂H+αLp̂L

p̂H

)1/2

=
(
αH + αL

p̂L
p̂H

)1/2

∈ (0, 1). Thus, the above is true iff

[
1 + (2κ+ 1)α

1/2
H

]
y2 − (2κ+ 2)

(
αH + α

1/2
H

)
y +

[
α

3/2
H + αH (2κ+ 1)

]
> 0. (45)

As the determinant

∆ ≡ (2κ+ 2)
(
αH + α

1/2
H

)2

− 4
[
1 + (2κ+ 1)α

1/2
H

] [
α

3/2
H + αH (2κ+ 1)

]
= −2αH

[(
2 + 6κ+ 8κ2

)√
αH + (1 + 3κ)αH + 3κ+ 1

]
< 0,

and
[
1 + (2κ+ 1)α

1/2
H

]
> 0, (45) is true.

Comparative Statics of Income Distribution

The effect of sH/sL on r∗

Observe that

∂Φ (r;κ, αH , x)

∂x
= −

(
1− α1/2

H

)
+

2κ (αHr + αL)1/2

2κ+ 1

[
(αHr + αL)1/2 − α1/2

H r1/2
]
.
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The above is negative iff the following is negative

(αHr + αL)− (αHr + αL)1/2 α
1/2
H r1/2 <

(2κ+ 1)

2κ

(
1− α1/2

H

)
. (46)

Note that

d

dr

[
(αHr + αL)− (αHr + αL)1/2 α

1/2
H r1/2

]
= −2rα

3
2
H +
√
αH (1− αH)− 2

√
rαH

√
(1− αH) + rαH

2
√

(1− αH) r + r2αH
,

which is negative if and only if 1 − αH > 0, which is true. Hence, the upper bound of
(αHr + αL) − (αHr + αL)1/2 α

1/2
H r1/2 is its value at r = 1, 1 − α1/2

H . Hence, (46) is true, and
equilibrium r∗ strictly increases in sH

sL
.

Γ2 and Γ2/Γ1 are both strictly increasing in r∗

Next, we show that Γ′2 (r∗) > 0. Suppose Γ′2 (r∗) ≤ 0, and consider an increase in sH with
sL fixed. Then, r∗ increases. By Γ′2 (r∗) ≤ 0, equilibrium p̂L increases or stays the same,
and this in turn implies that equilibrium p̂H increases. Thus, dp̂H

dsH
> 0. By the lemmas

proved in Appendix D, dp̂L
dsL

> 0, dp̂H
dsL

< 0, and dp̂L
dsH

< 0. But dp̂L
dsH

< 0 implies that p̂L
decreases, which reaches a contradiction. The result follows.

Next, we show that (Γ2/Γ1)′ (r∗) > 0. Suppose (Γ2/Γ1)′ (r∗) ≤ 0, and again consider an
increase in sH with sL fixed. Then, r∗ increases. By Γ′2 (r∗) > 0, equilibrium p̂L decreases.
Again, by the lemmas in Appendix D, p̂H increases. As eLL > 0 and eLH < 0, eL decreases.
As (Γ2/Γ1)′ (r∗) ≤ 0, equilibrium M decreases or stays the same. Equilibrium condition
sL/ (M) = eL is thus violated.

Appendix F: Production in International Trade

Firms differ in their marginal cost wic. Given equilibrium p̂L and p̂H , the problem for a
firm located in i with c is

max
{pij}nj=1≥c

πi (c) =
∑
j

[pij − τijwic]Qij (pij; c) .

This is equivalent to solving, in each market j,

max
pij≥c

πij (c) =

 [pij − τijwic]αHNj

(
p̂H,j
pij
− 1
)

if pij ∈ [p̂L,j, p̂H,j)

[pij − τijwic]Nj

(
αH p̂H,j+αLp̂L,j

pij
− 1
)

if pij ∈ [0, p̂L,j)
.
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For pij ∈ [0, p̂L,j),

πHL,ij (c) = max
pij

[pij − τijwic]Nj

(
αH p̂H,j + αLp̂L,j

pij
− 1

)
,

which entails

pij,HL (c) = τ
1/2
ij w

1/2
i c1/2 (αH p̂H,j + αLp̂L,j)

1/2 .

mij,HL (c) ≡ pijHL (c)

τijwic
=

(
αH p̂H,j + αLp̂L,j

τijwic

)1/2

.

πij,HL (c) = Nj

[
(αH p̂H,j + αLp̂L,j)

1/2 − (τijwic)
1/2
]2

.

For pij ∈ [p̂L,j, p̂H,j), the firms’ problem is

max
pij

πH,ij (c) = [pij − τijwic]αHNj

(
p̂H,j
pij
− 1

)
,

and the first-order condition entails

pH,ij (c) = (τijwic)
1/2 p̂

1/2
H,j.

mH,ij (c) ≡ pH,ij (c)

τijwic
=

(
p̂H,j
τijwic

)1/2

.

πH,ij (c) = αHNj

[
p̂

1/2
H,j − (τijwic)

1/2
]2

.

The difference here from the closed economy model is that the existence of τij raises
prices but decreases markups, given p̂H,j and p̂L,j .

Next, πHL,ij (c)− πH,ij (c) > 0 if and only if

c1/2 < ĉ
1/2
ij ≡

(αH p̂H,j + αLp̂L,j)
1/2 − α1/2

H p̂
1/2
H,j

(τijwi)
1/2
(

1− α1/2
H

) . (47)

To sum up, the optimal price is

p∗ij (c) =

{
pHL,ij (c) = τ

1/2
ij w

1/2
i c1/2 (αH p̂H,j + αLp̂L,j)

1/2 if c ≤ ĉij

pH,ij (c) = (τijwic)
1/2 p̂

1/2
H,j if c > ĉij

.

Note that pH,ij (c) > pHL,ij (c) for any c. So there is upward jump of the price schedule p∗

in terms of c at ĉij .
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Appendix G: Welfare in International Trade

Indirect utility is given by (33) or

U (sh) =

∫
ω∈Ωh

ln

(
p̂h

p∗ (ω)

)
dω.

The low income worker has a set of consumed goods ΩL that includes the ranges [0,M ]×
[0, ĉ] and [0,M ] × [0, ĉ/τ ] for local and imported goods. Using equilibrium prices p∗,
p̂L/p

∗ (ω) = p̂L/(p̂HLc)
1/2 and p̂L/(p̂HLτc)

1/2 for local and imported consumption, we get

U (sL) =

∫ ĉ

0

ln

(
p̂L

(p̂HLc)1/2

)
MdG(c) + (n− 1)

∫ ĉ/τ

0

ln

(
p̂L

(p̂HLτc)1/2

)
MdG(c)

One can compute
∫

ln
(
Ac−1/2

)
dG(c) = 1

2

(
c
cM

)κ [
2 ln (A) + 1

κ
− ln (c)

]
where A is a posi-

tive constant. Applying this to the above expression and simplifying we get[1 + (n− 1) τ−κ]M
p̂κL
cκM

[
aκ

2κ
− aκ ln

[(
1− α1/2

H

)
a+ (αHar)

1/2
]]

U (sL) = M
[
1 + (n− 1)τ−κ

] p̂κL
cκM

[
aκ

2κ
− aκ ln

[(
1− α1/2

H

)
a+ (αHar)

1/2
]]

where r = p̂H/p̂L and a = ĉ/p̂L.
The high income worker has a set of consumed goods ΩH that includes the ranges

[0,M ] × [0, p̂H ] and [0,M ] × [0, p̂H/τ ] for local and imported goods. Using equilibrium
prices,we get

U (sH) =

∫ ĉ

0

ln

(
p̂H

(p̂HLc)1/2

)
MdG(c) +

∫ p̂H

ĉ

ln

(
p̂H

(p̂Hc)1/2

)
MdG(c)

+ (n− 1)

[∫ ĉ/τ

0

ln

(
p̂H

(p̂HLτc)1/2

)
MdG(c) +

∫ p̂H/τ

ĉ

ln

(
p̂H

(p̂Hτc)1/2

)
MdG(c)

]

Using the same procedure as above, this simplifies to

U (sH) = M
[
1 + (n− 1)τ−κ

] p̂κL
cκM

[
aκ ln

(
r1/2 (αHr + αL)−1/2

)
+
rκ

2κ

]
.

Appendix H: Equivalent Variation

We define the relative equivalent variation to be the relative increase in income, (∆sh/sh)
eq,

that a worker h must receive to raise her utility level from the equilibrium utility U∗h to
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the target utility level Uh taking as given the equilibrium price system p∗ (ω), ω ∈ Ω∗ and
its product space Ω∗. By (33), we can write worker h’s indirect utility as

Vh(sh) =

∫
ω∈Ω∗h

ln

(
p̂∗h(sh)

p∗ (ω)

)
dω

where p̂∗h(sh) = (sh + P ∗h ) / |Ω∗h| is the workers h’s choke price expressed as a function of
income sh, Ω∗h is her equilibrium set of purchased goods and P ∗h =

∫
ω∈Ω∗h

p∗ (ω) dω her
price index. Then, a relative increase in income ∆sh/sh implies an income change from sh

to sh + ∆sh, which yields a change in utility level such that

U∗h − Uh =

∫
ω∈Ω∗h

ln

(
p̂∗h(sh)

p̂∗h(sh + ∆sh)

)
dω = |Ω∗h| ln

(
sh + P ∗h

sh + ∆sh + P ∗h

)
Inverting this expression, we obtain

∆sh
sh + P ∗h

= exp

(
−U

∗
h − Uh
|Ω∗h|

)
− 1

Using the definition of p̂∗h(sh), the relative equivalent variation can be expressed as(
∆sh
sh

)eq

=
|Ω∗h| p̂∗h(sh)

sh

[
exp

(
Uh − U∗h
|Ω∗h|

)
− 1

]
(48)

The low income consumers have p̂∗L(sL) = p̂L while, under Pareto productivity distribu-
tions, the mass of varieties is given by |Ω∗L| = MG(ĉ) [1 + (n− 1)τ−κ]. Then, their relative
equivalent variation is given by the following formula:(

∆sL
sL

)eq

=
MG(ĉ)p̂L

sL

[
1 + (n− 1)τ−κ

] [
exp

(
UL − U∗L

MG(ĉ) [1 + (n− 1)τ−κ]

)
− 1

]
The high income consumers with p̂∗H(sH) = p̂H and |Ω∗H | = MG(p̂H) [1 + (n− 1)τ−κ] get(

∆sH
sH

)eq

=
MG(p̂H)p̂H

sH

[
1 + (n− 1)τ−κ

] [
exp

(
UH − U∗H

MG(p̂H) [1 + (n− 1)τ−κ]

)
− 1

]
Note that for small utility differences, we can approximate relative equivalent variations
as (

∆sh
sh

)eq

' p̂h
sh

(Uh − U∗h) , h = L,H

Equivalent variations are proportional to utility differential and income group’s choke
price. Since p̂H > p̂L, a same rise in utility requires to give a larger increase in income
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to the higher income consumer because their marginal utility of consumption is lower.
Finally, note that equivalent variations are partial equilibrium concepts because prices
are fixed although they vary in our general equilibrium framework.
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